Deciphering the process of penumbra formation

J. Jurčák, N. Bello Gonzalez, R. Schlichenmaier, R. Rezaei²
transitions from pores to spots is triggered by magnetic field inclination exceeding 45 deg

such inclinations are found on boundaries of magnetic flux tubes with Φ of $1-7 \times 10^{20}$ Mx

this is in agreement with observed values of Φ in protospots

Zwaan, 1987, ARA&A, 25,83 : 5×10^{20} Mx

Rezaei et al., 2012, A&A, 537, A19: 4×10^{20} Mx

...we show that penumbral structures with such outflows form when the average magnetic field inclination to the vertical exceeds about 45 degrees...

confirmed the previous simplified computations with MHD simulations of sunspot
transitions from pores to spots is triggered by magnetic field inclination exceeding 45 deg
such inclinations are found on boundaries of magnetic flux tubes with Φ of $1-7 \times 10^{20}$ Mx
this is in agreement with observed values of Φ in protospots
Zwaan, 1987, ARA&A, 25,83 : 5×10^{20} Mx
Rezaei et al., 2012, A&A, 537, A19: 4×10^{20} Mx

we found observational support for this finding
there is no minimal magnetic flux necessary for a penumbra formation

…we show that penumbral structures with such outflows form when the average magnetic field inclination to the vertical exceeds about 45 degrees…
confirmed the previous simplified computations with MHD simulations of sunspot
Stable umbra/penumbra boundary

Apparent motions of penumbral bright grains

Jurčák et al., 2015, A&A, 580, L1
Stable umbra/penumbra boundary

Vertical component of the magnetic field defines the boundary

- both magnetic field strength and inclination vary significantly along umbra/penumbra boundaries of developed sunspots
- the stronger the field is on the boundary, the more horizontal it is
- this results into a constant value of the vertical component of the magnetic field strength (B_{ver}) along the boundary
- possible weak dependence of B_{ver} on the sunspot size

Penumbra formation

VTT data
G-band imaging (continuous)
GFPI spectropolarimetry (continuous)
Schlichenmaier et al. 2010, AN
Schlichenmaier et al. 2010, A&A
Rezai et al. 2012, A&A
Bello Gonzalez et al. 2012, A&A

Hinode data
G-band imaging (continuous)
spectropolarimetry (sparse)

Hinode 9, Belfast, 16 Sep 2015
Triggering the penumbra formation

Jurčák et al., 2014, PASJ, 66, 3
Forming umbra/penumbra boundary

Apparent motions of penumbral bright grains move the boundary towards the umbral core

Jurčák et al., 2015, A&A, 580, L1
Forming umbra/penumbra boundary
Change of its position

- The forming umbra/penumbra boundary migrates toward the sunspot centre.
- The mean distance to the umbral core decreases by approximately 20% in the first 4 hours.
- The umbra/penumbra boundary is stationary in developed sunspots.
- The mean distance to the umbral core fluctuates within ±1% of this distance.

Jurčák et al., 2015, A&A, 580, L1
Forming umbra/penumbra boundary
Evolution of the B_{ver} on the UP boundary

- before the rapid evolution of penumbral filaments, the B_{ver} is decreasing
- as the forming umbra/penumbra boundary migrates toward the sunspot centre, B_{ver} increases
- B_{ver} saturates around 1.3 kG when the umbra/penumbra boundary reaches a stable position

Jurčák et al., 2015, A&A, 580, L1
Forming umbra/penumbra boundary
Final stage – comparison with Hinode data

- the last GFPI scan (at 12:40 UT) is co-temporal with a Hinode scan of the region
- after the co-alignment of the studied umbra/penumbra boundaries, we found the vertical component of the magnetic field around 1.8 kG using Hinode data
- this value is comparable to the vertical component of the magnetic field strength on the umbra/penumbra boundaries of small developed sunspots
- the obtained discrepancy is partly caused the atmospheric stray. The main cause is a difference of resulting inclination values. We speculate that this difference might be due to limitations in the polarimetric calibration of the GFPI data
Penumbra formation at a pore boundary

- The penumbra develops at a boundary of a pore located close to the polarity inversion line (PIL).
- Total vertical magnetic flux is at maximum 9×10^{19} Mx.

Hinode 9, Belfast, 16 Sep 2015
Penumbra formation at a pore boundary

The critical magnetic field inclination of 45 deg

- histogram of magnetic field inclination in the pore area
- at all times, the maximum inclination in the dark pore is below 45 deg
- this is matching the critical magnetic field inclination derived by Rucklidge et al. 1995, MNRAS, 273, 491
Conclusions

- the penumbra formation is triggered by large inclinations
- the magnetic flux is not a key factor for a penumbra formation, only favorable configuration of the magnetic field is necessary
- the motions of bright penumbral grains results into a migration of a forming umbra/penumbra boundary towards the sunspot centre
- the forming penumbra extends to umbral regions where B_{ver} is smaller than the canonical B_{ver} value around 1.8 kG
- this confirms the previously found canonical value of B_{ver} on stable umbra/penumbra boundaries
- if B_{ver} is everywhere smaller than the critical B_{ver} value, the forming penumbra eventually dissolve the pore and orphan penumbra can be observed
- the penumbral mode of magneto-convection is suppressed by strong enough B_{ver}