Solar system studies

Orbiting our Sun are millions of asteroids and comets that hold clues to how planetary systems form and evolve. We perform observational studies to unravel these clues, and reveal interesting facts about the asteroids and comets themselves. Most of this research is observationally led, with significant allocations of observing time on telescopes at ESO and La Palma. We co-lead the asteroid science programme within the Pan-STARRS1 Science Consortium, and are members of the NEOShield-2 Project, the UK-LSST Consortium and the WASP Consortium.

Group Members

Prof. Alan Fitzsimmons is particularly interested in asteroid photometry, cometary size distributions and evolution, and NEO/comet spectroscopy. He is co-Lead of the Pan-STARRS 1 Inner Solar System Survey. He is also a member of the NEOShield-2 project, the ESA Rosetta ground-based support team, and the ISSI teams on Near-Sun Comets and Main-Belt Comets Main-Belt Comets. When he's not teaching at QUB he sometimes manages to escape to places like this.

Dr. Wes Fraser is an expert on Trans-Neptunian Objects that mark the outermost edge of our planetary system, studying their colours and compositions. Wes was the Plaskett Research Fellow at the University of Victoria in Canada, and is now a Queen's Research Fellow. He is Principal Investigator on the COL-OSSOS project, running alongside the OSSOS project. Watch him explain his research.

Dr. Pedro Lacerda researches the formation and evolution of cometary bodies and the rotation properties of Trans-Neptunian Objects. Pedro was originally a Royal Society Newton Fellow at QUB, then became a Research Group Leader at the Max-Planck Institute for Solar System Research, before returning to QUB as a member of Faculty.

Dr. Michele Bannister is a Postdoctoral Research Fellow, analysing Pan-STARRS data and looking for asteroids undergoing mass loss through collisions and sublimation. She also searches the outer Solar System for new icy worlds with the OSSOS survey, and studies the colours of icy TNOs as a Co-Investigator on Col-OSSOS. You can follow her adventures via Twitter @astrokiwi.

Dr. Michael Marsset is a Postdoctoral Research Fellow, measuring the colours of Trans-Neptunian Objects within the COL-OSSOS project.

Dr. David Young is a software developer, working on providing Level 2/3 work packages to enable solar system science on the Large Synoptic Survey Telescope. He also works part of his time on supporting the ATLAS project work within the Supernovae and Transient group here at the ARC.

Meabh Hyland is a PhD student studying the photometric properties of Trans-Neptunian Objects using Pan-STARRS 1, and performing comet spectroscopy to measure cometary compositions.

Tom Seccull is a PhD student studying the colours and physical properties of Trans-Neptunian Objects, and just loves using the X-SHOOTER pipeline.

Jamie Robinson is a PhD student studying formation processes of solar system binaries, and enjoys making cool python movies of things hitting and sticking to other things.

Previous group members include:

  • Stephen Lowry - Senior Lecturer in Astronomy and Astrophysics at the University of Kent, England.
  • Colin Snodgrass - Ernest Rutherford Research Fellow at The Open University, UK.
  • Henry Hsieh - Research Scientist at the Planetary Research Institute, USA.
  • Larry Denneau - Lead software engineer on the new ATLAS project in Hawai'i.
  • Andrew McNeill - Postdoc at Northern Arizona University, USA.


Asteroid Itokawa as imaged by the Hayabusa Spacecraft (Image courtesy ISAS/JAXA)

Between the planets Mars and Jupiter lies the Main asteroid-belt, where Earth-bound telescopes have so far discovered over 500,000 small rocky bodies orbiting our Sun. We are using the PanSTARRS 1 facility to investigate their rotational properties, and search for collisions that may be occurring between the asteroids.

Near-Earth Objects (NEOs) pose an immediate threat to the Earth through the possibility of impact. From 2005-2008 we operated UKAPP in order to improve our knowledge of this threat, and occasionally still assist in this area. They also offer an exciting opportunity to study small asteroids brought to us from the asteroid belt, and test dynamical and physical theories of small body evolution. Hence we also determine the composition of these bodies through multi-colour photometry and spectroscopy, to assist theoretical models in disentangling the possibles sources of NEOs.

A primary focus of our current research is asteroid science with the Pan-STARRS 1 telescope. Surveying the sky since May 2010, we have already made 3 million asteroid detections with this facility. We are using this unique resource to understand the spin distribution of small main-belt asteroids, searching for contact binaries that may result from asteroid-asteroid collisions or YORP spin-up, and looking for for real-time collisions.

An important project that started in 2012 is NEOShield, an international effort to investigate the best ways to deflect oncoming asteroids before they impact. Initially a 3.5 year project starting in 2012, this project successfully evaluated what we know, and importantly what we don't know, about moving asteroids. This is now continuing via EU Horizon 2020 funding as NEOShield-2. By the end of 2018 the project will have obtained and published world-leading knowledge on how to avoid are impacts by using a kinetic impactor.

Comets and other icy bodies

Comet 67P/Curyumov-Gerasimenko observed as part of the ESA Rosetta support campaign.

Cometary nuclei are the most primitive bodies that exist in our Solar system. The current generation of 4-m and 8-m telescopes allow us to derive the gross properties of cometary nuclei such as size, spin-rate and colour. Although we occasionally study bright long-period comets such as Hale-Bopp or McNaught, many of the comets we study are short-period comets. Also called Jupiter-family comets, these originate from the Kuiper-Belt. The target of the Rosetta mission, comet 67P/Churyumov-Gerasimenko, is such a comet. We are part of the ground-based observation programme lead by Colin Snodgrass in support of this once-in-a-lifetime scientific project, and will be co-organising a major international meeting on the new findings in London in 2016.

In recent years a new population of comets have been discovered residing in the main asteroid belt. These main-belt comets may be our way of identifying the source of Earth's water. Several of the mysterious objects have now been discovered/observed with Pan-STARRS 1, and we are working with Henry Hsieh at PSI to search for more signs of water in the asteroid belt.

A fascinating population of comets are the Sungrazers - comets that approach the Sun within 1 Solar radius. Over 3,000 of these objects have now been observed by Solar observatories being vaporised by the Sun's intense heat. We are members of an International team to investigate this unique population. We are leading a programme to try and detect these comets from Earth before their death-plunge. In 2015 we observed a similar comet - a Sunskirter - from Earth for the first time, in collaboration with colleagues from Lowell Observatory and University of Maryland.

Trans-Neptunian Objects

They're big! They're round! They're nowhere near the ground! Also, they're not planets.

Solar System Group Meetings

public/research_areas/solar_system/start.txt · Last modified: 2017/08/01 19:07 by Thomas Seccull

Back to Top Sitemap News